Information Operations Immunity Style

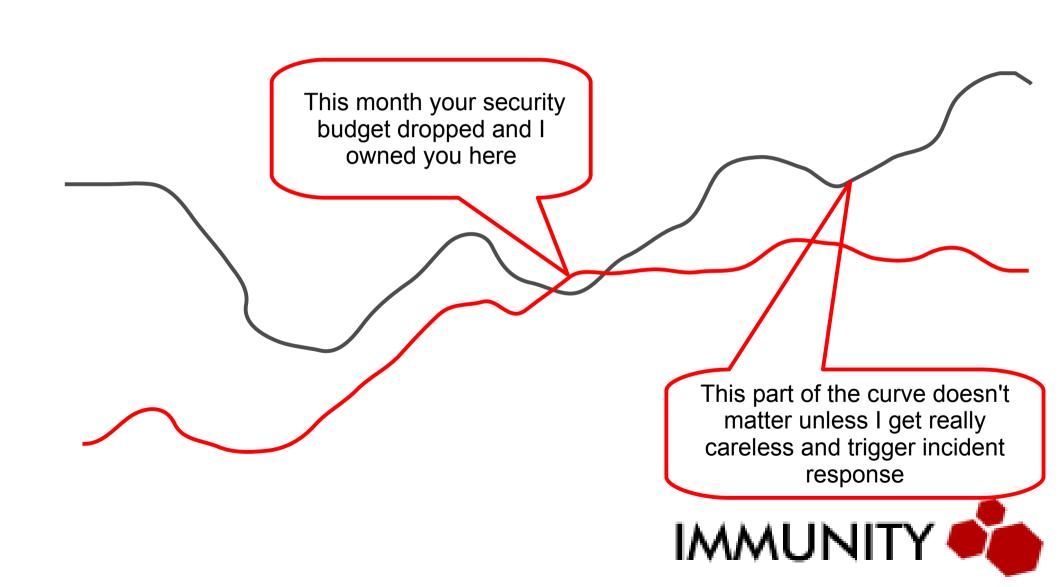
www.immunityinc.com

Agenda

- A Real Life Scenario
- Problems of scale when hacking
 - Client-sides
- Immunity's PINK Framework
- Trojaning hard targets
 - Immunity Debugger Parasitic Infection

Real Life Scenario

- Modeling attack on high value target
- Long time scale operation
- Wide internal scope
- A different kind of contract than pen-testing
- Immunity calls this "Information Operation (IO)"



10 simulation vs. Pen-test

- Modern pen-test is compressed timescale.
- IO is not. Time passes, collection occurs.
- Collection over time gives clear picture of the network, people and data.
- No need for blind network scans or random break-ins. First learn where to go.
- Exploit trust!

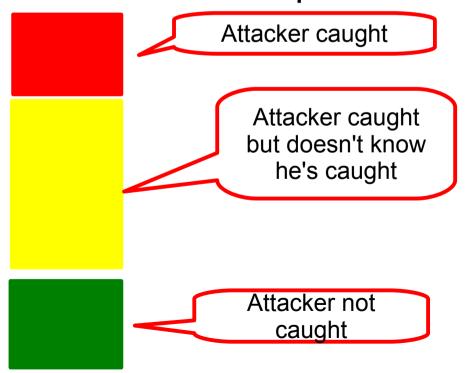
Your Network vs Your Attacker

Model of attacker

- Guaranteed to exist
 - Web server
 - MTA server
 - DNS server
 - Border Routers, FW / VPN
 - Endpoints (unknown internal networks)

Not the web server

- Web server was on some random other ISP
 - Dry content without useful logic
 - Hard targets are just that HARD
 - Even if we broke into the web server, no guarantee of anything useful there
 - Apache + IIS only players
 - Hard to audit large investment


Not the infrastructure

- Routers
 - Embedded device exploitation is fun but
 - Costly lab setup
 - Hard to get it right for all potential firmware
 - Might not detect exact hardware (mips vs. ppc)
- VPN
- Firewall

Not the endpoint

- Did not start with client-sides
 - client-sides are somewhat blind
 - detection is much easier for smart opponent
 - hard to clean up after them

The MTA

- Intense versioning on mail server
- One box only
- No class-C scan
- No port scan of that one box
- MTA Gateways
 - No big corporation can run without SPAM/Malware filter
 - Hard to fingerprint Protocol response is the best way (now in CANVAS)

Soft direct approach - I

- Audit 3rd party AV-SPAM product on MTA Gateway. Easier task than to look into core OS components.
- Extensive file format parsing proven by many researchers to be badly implemented.
- AV on gateways has to be hi-avail, which means watchdogs and intensive exceptionhandling. Memory corruptions handled or process restarted.
 - Gives unlimited exploitation trial.

Soft direct approach - II

- Model your target in lab.
- VMware vs. Real Iron
- Language detection might be an issue
- Extensive modeling of your target in lab cuts down the exploit development time by half.
- AV products vague about restarts and crashes.
 Makes attempts less suspicious.
- Almost all AV breaks DEP and SafeSEH. Most compiled with Borland = insecure heap metadata. Do not use /GS.

Audit results

- Heap overflow in unpacking (quite common)
- Alex Wheeler independently discovered the issue as well. Vendor patches available
- Exploitation vector:
 - Email attachment
 - Could be send to void user
 - Scanned no matter what, than discarded
 - Not much trace left even after failed exploitation
 - DEP disabled by product, Watchdog restarts process
 IMMUNITY

Custom Payload

- First a MOSDEF shell (CANVAS)
- Than custom backdoor DLL for email collection
- Inject custom DLL into memory (MS detours) and write into the PE header
- DLL hooks API within the AV process to get a copy of the scanned email
 - Stores email in archive file for later collection
 - Scans email content for keyword to callback MOSDEF shell to encoded IP

Further breach - I

- Email collection over long period
- Analyze email. Now you know which internal box is high value
- DMZ to internal LAN cross over is simple with acquired intelligence
 - Exploiting trust is trivial at this point

Further breach - II

- Exploited Email chatter between user and 3rd party
- Used mail attachment to infect internal Desktop (PINK)
- Broke into PDC with DNS msrpc exploit
- Obtained domain admin hash
- Installed executable remotely to high value target using the admin hash (CANVAS)
- Recently accessed files folder content not on the hard drive. USB drive!

Breaching the Air-Gap - I

- USB drive goes between segmented development network and the Internet network
- Error logs from 3rd party product are emailed to the support group
- Logs carried from segmented network to the Internet network
- USBDumper comes to mind!

Breaching the Air-Gap – II

- Modified USBDumper for in-memory injection
- Same DLL injection trick
- Added file tracking and free disk space tracking
- Once again, time passes
- Eventually partial access to high value "segmented" data
- Breach vector: Simply a tainted USB drive

Scenario Conclusions

- AntiVirus gateways are a serious security risk
 - Complex parser on crucial hosts!
- USB drives can be high value targets
- Relationship mapping is required in professional attack toolkits
 - More than just X knows Y needs technical information about email content as well. Does X talk to Y about Z? Do they send PDFs about Q?

Agenda

- A Real to Life Scenario
- Problems of scale when hacking
 - Client-sides
- Immunity's PINK Framework
- Trojaning hard targets
 - Immunity Debugger Parasitic Infection

Scalability problems

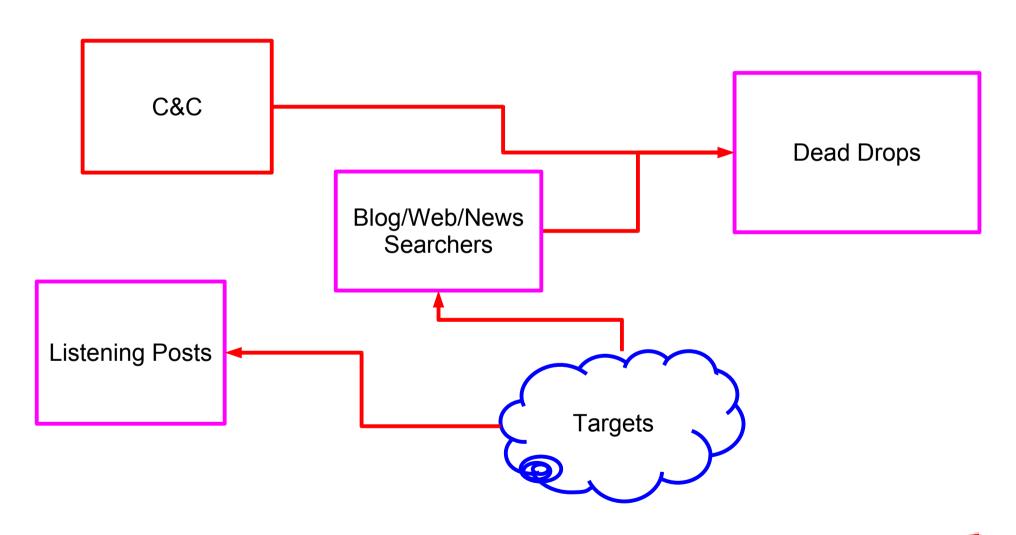
- Management of one hundred ants is easy
 - Picture of thirty million ants
- A good client-side vulnerability can be used to own a quarter million boxes a day
- Future work involves self-directed worms

Current Botnet C&C technology

- IRC
 - Easy to tear down, take over
- HTTP to single server
 - Share IRC's cons
- Fast-Flux of DNS Servers
 - Easy to block the domain requests
- Storm P2P protocols
 - Reliable but not covert
 - Does not pass through strict proxies

New C & C

- Need a new Command & Control technology
 - Scalable
 - Covert
 - Portable



Agenda

- A Real to Life Scenario
- Problems of scale when hacking
- Immunity's PINK Framework
- Trojaning hard targets
 - Immunity Debugger Parasitic Infection

PINK C&C Framework

Blog Search

- Blog searching is currently the best parasitic host protocol for PINK
 - Almost instantaneous responses
 - Easy to find hosts for our blogs
 - Lots of signal to hide in
 - RSS feeds
- Other search operations can be implemented as well

PINK Dead Drops

- <Cover Text>
- <TRIGGER>
- <base 64><RC4 Encrypted/RSA Signed
 Commands></base64>
- <END TRIGGER>
- <More Cover Text>

PINK Dead Drops

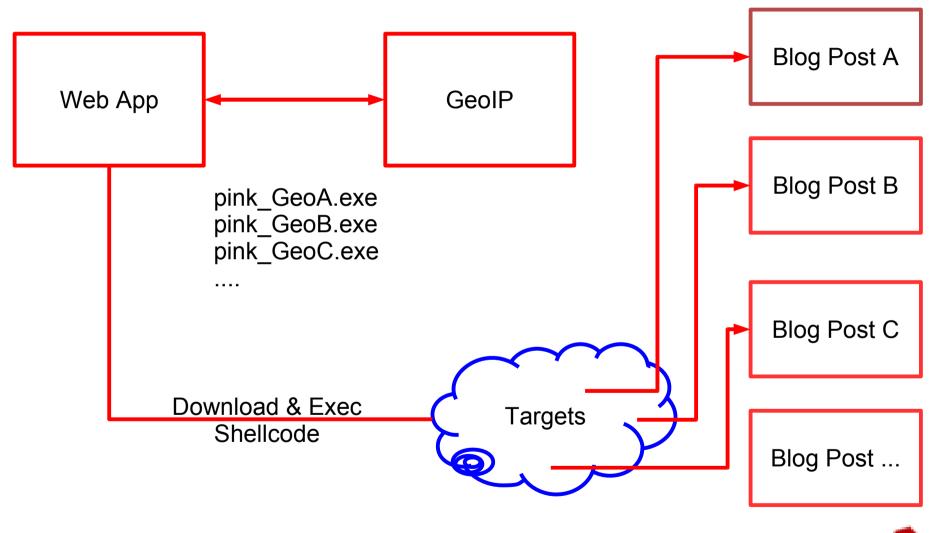
- Signed and Encrypted payloads prevent replay attacks with removal kits
- Triggers need to be signed with time-based key as well. PINK verifies signature before command execution
- Trigger strings of random words makes it hard for search engines to filter our requests

PINK Tech - I

- Installs itself as a Shell Extension
- Does not require Admin privs due to current user-only registry key injection
- Persistent across reboots
- In DLL format within Explorer.exe
- Takes itself out of PEB loaded modules list
- Invisible in user mode

PINK Tech - II

- No known AV product checks for malicious Shell Extensions.
- Initial loading of the shell extension requires a shell activity such as; copy, paste, delete, rightclick, drag & drop etc. by end user
- Personal firewalls might trigger on Explorer.exe outbound connection. Easy problem to solve, hard to port across the whole market.



PINK Tech - III

- 3 components
 - PINK backdoor dll (shell extension)
 - PINK installer (dll embedded within)
 - Blog content generatorTriggerText((RSA_sign(RC4_enc(Commands)));
- PINK installer changes before download to reflect a certain drone subnet
- GeoIP <-> Blog search

PINK Subnets

Targets & Triggers

- Goal is to divide our targets into manageable sets, Could be;
 - Per Country
 - Per Company
 - Per Domain
 - Per Time-of-exploit
 - etc
- Could than do things like;
 - "All hosts from immunityinc.com domain" please contact listeningpost.my.com using HTTP MOSDEF on port 443

PINK Tech - IV

- Internet searches on configurable timer. Every X hour
- When the timer expires, checks for user mouse, keyboard activity
- If none, sleeps on shorter intervals to check for user activity more often
- If user active, google search, find dead drop block, verify signature, decode
- Run commands, sleep on timer again

Current Pink Commands

- Callback over HTTP/HTTPS MOSDEF to CANVAS
- Callback over TCP MOSDEF to CANVAS
- Download from URL and Exec
- Download from URL and LoadLibrary
- Exec given string
- Upload file(s) to URL (ftp/http/https)
- Key log
- Update self
- Coming: Vbscripting

PINK conclusions

- Currently in Beta-testing state pushing out to CANVAS shortly
- Parasitic C&C is:
 - Hard to detect and monitor
 - Easily re-targetable to any search engine or search option on a web page
 - Does not require expensive infrastructure to maintain

PINK exploitation setup

- Client-Side exploit
 - Acrobat PDF reader through IE7
- Shellcode
 - UrlDownloadToCacheFile & WinExec
 - Downloads pink installer into IE cache and runs it
- Pink installer extracts pink.dll into a user directory
- Adds pink.dll as a shell extension
- Clean up

PINK demo

• TBD

Overall Conclusions

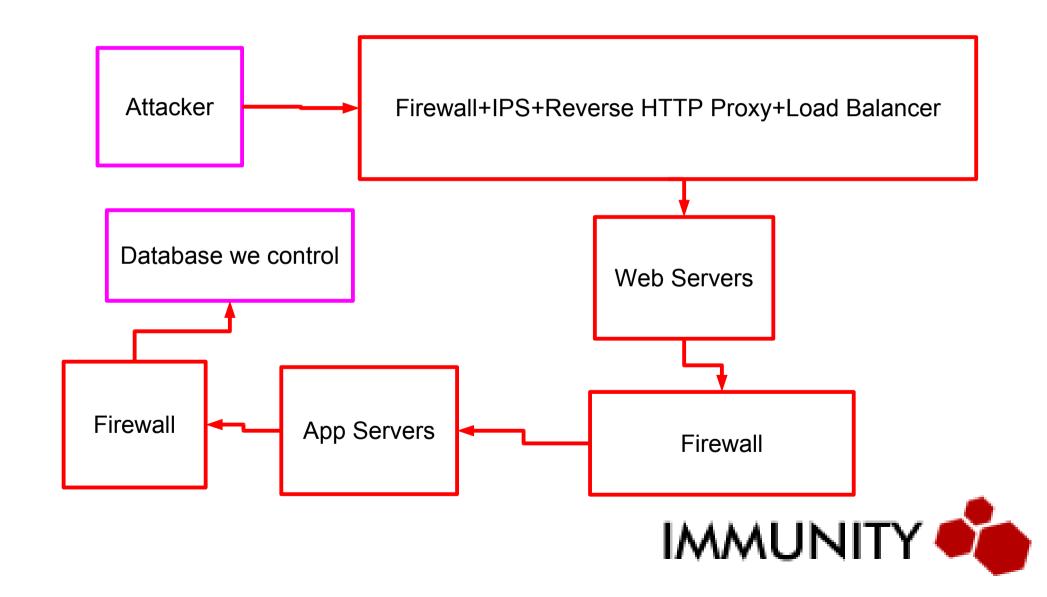
- IO proven itself. MTA compromised, Endpoint compromised, Air gap breached
- PINK introduces stealth and persistence on endpoints
- Recent market shift to automated incident response as part of vulnerability analysis faces ongoing challenges as attackers build one-time custom-use trojans and one-time use exploits

Epilogue

- Invest in human capital
 - Build and train teams
- Be on the offense

Agenda

- A Real to Life Scenario
- Problems of scale when hacking
- Immunity's PINK Framework
- Trojaning hard targets
 - Immunity Debugger Parasitic Infection



Servers and hard targets

- Servers may not be able to contact us via HTTP
- Need way to connect to stationary targets behind firewalls and application proxies covertly
- Each target is different!
- Example target: MS SQL Server 2005 in strict DMZ tier

Every web application is a unique snowflake

Custom automatic backdoors

- Use Immunity Debugger to analyze target .exe/.dll
- Send traffic to it and trace where our triggers are seen
- Create custom backdoor .dll and write this to disk and memory
- Box is now trojaned in a way that does not require direct connectivity!

Why Immunity Debugger?

- Includes built in analysis engine
- Full Python scripting API can do both dynamic and static analysis
- Send data to the server and then see what API it triggers
- Trojan in memory or on disk or both

